Patchwork is a command-line interface. It can be used in your local terminal, IDE or as part of a CI/CD pipeline.

Installation

Using Pip

PatchWork is available on PyPI and can be installed using pip:

pip install 'patchwork-cli[all]' --upgrade

The following optional dependency groups are available.

  • security: installs semgrep and depscan with pip install 'patchwork-cli[security]' and is required for AutoFix and DependencyUpgrade patchflows.
  • rag: installs chromadb with pip install 'patchwork-cli[rag]' and is required for the ResolveIssue patchflow.
  • notifications: Used by steps sending notifications, e.g. slack messages.
  • all: installs everything.
  • not specifying any dependency group (pip install patchwork-cli) will install a core set of dependencies that are sufficient to run the GenerateDocstring, PRReview and GenerateREADME patchflows.

Using Poetry

PatchWork is built using Poetry, a dependency management and packaging tool for Python. To install PatchWork using Poetry, follow these steps:

  1. Make sure you have Poetry installed. If you don’t have it installed, you can install it by running:

    curl -sSL https://install.python-poetry.org | python3 -
    
  2. Clone the PatchWork repository:

    git clone https://github.com/patched-codes/patchwork.git
    
  3. Navigate to the project directory:

    cd patchwork
    
  4. Activate a shell using virtual environment:

    poetry shell
    
  5. Install the dependencies using Poetry:

    poetry install --all-extras
    

PatchWork CLI

The CLI runs Patchflows, as follows:

patchwork <Patchflow> <?Arguments>

Where

  • Arguments: Allow for overriding default/optional attributes of the Patchflow in the format of key=value. If key does not have any value, it is considered a boolean True flag.

Example

For an AutoFix patchflow which patches vulnerabilities based on a scan using Semgrep:

patchwork AutoFix openai_api_key=<YOUR_OPENAI_API_KEY> github_api_key=<YOUR_GITHUB_TOKEN>

The above command will default to patching code in the current directory, by running Semgrep to identify the vulnerabilities.

You can take a look at the default.yml file for the list of configurations you can set to manage the AutoFix patchflow. For more details on how you can use a personal access token from GitHub on CLI you can read this.

You will need to pass your own openai_api_key to call the LLM. Otherwise, to get started, you can get a patched_api_key for free by by signing in at https://app.patched.codes/signin and generating an API key from the integrations tab. You can then call the patchflow with the key as follows:

patchwork AutoFix patched_api_key=<YOUR_PATCHED_API_KEY> github_api_key=<YOUR_GITHUB_TOKEN>

Similarly, to use Google’s models you can set the google_api_key and model, this is useful if you want to work with large contexts as the gemini-pro-1.5 model supports a input context length of 1 million tokens.

The patchwork-configs repository contains the default configuration and prompts for all the patchflows. You can clone that repo and pass it as a flag to the CLI:

patchwork AutoFix --config /path/to/patchwork-configs/patchflows

Using open source models

Patchwork supports any OpenAI compatible endpoint, you can use that to use any LLM from various providers like Groq, Together AI, or Hugging Face.

E.g. to use Llama 3.1 405B from Groq.com run:

patchwork AutoFix client_base_url=https://api.groq.com/openai/v1 openai_api_key=your_groq_key model=llama-3.1-405b-reasoning

You can also use a config file to do the same, e.g. if you want to use Llama 3.1 405B from Hugging Face you can create a config.yml file:

openai_api_key: your_hf_token
client_base_url: https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3.1-405B-Instruct-FP8/v1
model: Meta-Llama-3.1-405B-Instruct-FP8

And run as:

patchwork AutoFix --config=/path/to/config.yml

This also allows you to run local models via llama.cpp, ollama, vllm or tgi. For instance, you can run Llama 3.1 8B locally using llama_cpp.server as follows:

python -m llama_cpp.server --hf_model_repo_id bullerwins/Meta-Llama-3.1-8B-Instruct-GGUF --model 'Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf' --chat_format chatml

Then run your patchflow:

patchwork AutoFix client_base_url=https://localhost/v1 openai_api_key=no_key_local_model